Pages

Rabu, 25 Februari 2015

Lampu pendar



Lampu pendar adalah salah satu jenis lampu lucutan gas yang menggunakan daya listrik untuk mengeksitasi uap raksa.[1] Uap raksa yang tereksitasi itu menghasilkan gelombang cahaya ultraungu yang pada gilirannya menyebabkan lapisan fosfor berpendar dan menghasilkan cahaya kasatmata.[1] Lampu pendar mampu menghasilkan cahaya secara lebih efisien daripada lampu pijar.[2]
Lampu pendar dikenal dalam dua bentuk utama.[3] Yang pertama berbentuk tabung panjang atau yang umum dikenal dengan lampu TL (tubular lamp) atau lampu neon dan yang kedua berukuran lebih kecil dengan tabung ditekuk menyerupai spiral, umum disebut dengan sebutan lampu hemat energi (LHE).[3]
Karena lampu pendar memiliki efisiensi lebih tinggi daripada lampu pijar, pemerintah Indonesia pernah mencanangkan program penggantian lampu pijar dengan lampu pendar secara gratis.[4] Namun seiring dengan kemajuan teknologi, efisiensi pencahayaan diode cahaya atau lebih dikenal dengan lampu LED mulai setara dengan efisiensi pencahayaan lampu pendar walaupun harus dalam kondisi tertentu. [5]

Plasma (wujud zat)


Dalam ilmu fisika dan kimia, plasma merupakan substansi yang mirip dengan gas dengan bagian tertentu dari partikel terionisasi. Adanya pembawa muatan yang cukup banyak membuat plasma bersifat konduktor listrik sehingga bereaksi dengan kuat terhadap medan elektromagnet. Oleh karena itu, plasma memiliki sifat-sifat unik yang berbeda dengan padatan, cairan maupun gas dan dianggap merupakan wujud zat yang berbeda. Mirip dengan gas, plasma tidak memiliki bentuk atau volume yang tetap kecuali jika terdapat dalam wadah, tetapi berbeda denga gas, plasma membentuk struktur seperti filamen, pancaran dan lapisan-lapisan jika dipengaruhi medan elektrommagnet. Plasma yang umum ditemui antara lain adalah bintang dan lampu pendar.
Plasma pertama kali diidentifikasi pada sebuah tabung Crookes, dan dideskripsikan oleh Sir William Crookes pada tahun 1879 (dia menyebutnya radiant matter).[1] Sifat-sifat dari materi sinar katode pada tabung Crookes kemudian diidentifikasi oleh fisikawan Inggris J. J. Thomson pada tahun 1897,[2] dan disebut sebagai "plasma" oleh Irving Langmuir pada tahun 1928,[3] mungkin karena benda ini mengingatkannya pada plasma darah. Langmuir menulis:[3]
Except near the electrodes, where there are sheaths containing very few electrons, the ionized gas contains ions and electrons in about equal numbers so that the resultant space charge is very small. We shall use the name plasma to describe this region containing balanced charges of ions and electrons.
Kecuali di dekat elektrode, dimana terdapat selongsong yang mengandung sangat sedikit elektron, gas yang terionisasi mengandung ion dan elektron dalam jumlah yang hampir sama sehingga resultan muatan ruang sangatlah kecil. Kami menggunakan nama plasma untuk mendeskripsikan daerah ini yang mengandung muatan ion dan elektron seimbang.


Jumat, 20 Februari 2015

Ion

Ion adalah atom atau sekumpulan atom yang bermuatan listrik. Ion bermuatan negatif, yang menangkap satu atau lebih elektron, disebut anion, karena dia tertarik menuju anode. Ion bermuatan positif, yang kehilangan satu atau lebih elektron, disebut kation, karena tertarik ke katode. Proses pembentukan ion disebut ionisasi. Atom atau kelompok atom yang terionisasi ditandai dengan tikatas n+ atau n-, di mana n adalah jumlah elektron yang hilang atau diperoleh.

Cendekiawan

Cendekiawan atau intelektual ialah orang yang menggunakan kecerdasannya untuk bekerja, belajar, membayangkan, mengagas, atau menyoal dan menjawab persoalan tentang berbagai gagasan. Kata cendekiawan berasal dari Chanakya, seorang politikus dalam pemeritahan Chandragupta dari Kekaisaran Maurya.
Secara umum, terdapat tiga pengertian modern untuk istilah "cendekiawan", yaitu:
  1. mereka yang amat terlibat dalam idea-idea dan buku-buku;
  2. mereka yang mempunyai keahlian dalam budaya dan seni yang memberikan mereka kewibawaan kebudayaan, dan yang kemudian mempergunakan kewibawaan itu untuk mendiskusikan perkara-perkara lain di khalayak ramai. Golongan ini dipanggil sebagai "intelektual budaya".
  3. dari segi Marxisme, mereka yang tergolong dalam kelas dosen, guru, pengacara, wartawan, dan sebagainya.
Oleh karena itu, cendekiawan sering dikaitkan dengan mereka yang lulusan universitas. Namun, Sharif Shaary, dramawan Malaysia terkenal, mengatakan bahwa hakikatnya tidak semudah itu. Ia berkata:
"Belajar di universitas bukan jaminan seseorang dapat menjadi cendekiawan... seorang cendekiawan adalah pemikir yang sentiasa berpikir dan mengembangkan (serta) menyumbangkan gagasannya untuk kesejahteraan masyarakat. Ia juga adalah seseorang yang mempergunakan ilmu dan ketajaman pikirannya untuk mengkaji, menganalisis, merumuskan segala perkara dalam kehidupan manusia, terutama masyarakat di mana ia hadir khususnya dan di peringkat global umum untuk mencari kebenaran dan menegakkan kebenaran itu. Lebih dari itu, seorang intelektual juga seseorang yang mengenali kebenaran dan juga berani memperjuangkan kebenaran itu, meskipun menghadapi tekanan dan ancaman, terutama sekali kebenaran, kemajuan, dan kebebasan untuk rakyat." [1]

Plato

Plato (bahasa Yunani: Πλάτων) (lahir sekitar 427 SM - meninggal sekitar 347 SM) adalah seorang filsuf dan matematikawan Yunani, penulis philosophical dialogues dan pendiri dari Akademi Platonik di Athena, sekolah tingkat tinggi pertama di dunia barat.[2] Ia adalah murid Socrates.[2] Pemikiran Plato pun banyak dipengaruhi oleh Socrates.[3]. Plato adalah guru dari Aristoteles.[2] Karyanya yang paling terkenal ialah Republik (dalam bahasa Yunani Πολιτεία atau Politeia, "negeri") yang di dalamnya berisi uraian garis besar pandangannya pada keadaan "ideal".[butuh rujukan] Dia juga menulis 'Hukum' dan banyak dialog di mana Socrates adalah peserta utama.[butuh rujukan] Salah satu perumpamaan Plato yang termasyhur adalah perumpaan tentang orang di gua.[2] Cicero mengatakan Plato scribend est mortuus (Plato meninggal ketika sedang menulis).[2]
  • Bersifat Sokratik
Dalam Karya-karya yang ditulis pada masa mudanya, Plato selalu menampilkan kepribadian dan karangan Sokrates sebagai topik utama karangannya.[2]
  • Berbentuk dialog
Hampir semua karya Plato ditulis dalam nada dialog.[2] Dalam Surat VII, Plato berpendapat bahwa pena dan tinta membekukan pemikiran sejati yang ditulis dalam huruf-huruf yang membisu.[2] Oleh karena itu, menurutnya, jika pemikiran itu perlu dituliskan, maka yang paling cocok adalah tulisan yang berbentuk dialog.[2]

Empedokles

Empedokles adalah seorang filsuf dari mazhab pluralisme.[1][2][3] Tokoh lainnya dari mazhab ini adalah Anaxagoras.[1][2] Jika filsuf-filsuf Miletos mengajarkan bahwa terdapat satu prinsip dasar yang mempersatukan alam semesta, Empedokles berpendapat lain.[1] Menurut Empedokles, prinsip dasar itu tidaklah tunggal melainkan empat.[1] Ia dikenal sebagai seorang dokter, penyair, ahli pidato, dan politikus.[2]
Empedokles menulis dua karya dalam bentuk puisi.[2] Puisi pertama berjudul "Perihal Alam" (On Nature) dan yang kedua berjudul "Penyucian-Penyucian" (Purifications).[2][4] Kedua karya tersebut memiliki 5000 ayat, namun yang masih ada hingga kini tinggal 350 ayat dari karya pertama, dan 100 ayat dari karya kedua.[2] Para ahli tidak sepakat mengenai mana karangan yang lebih dahulu ditulis.[2]Empedokles lahir di Agrigentum, pulau Sisilia, pada abad ke-5 SM (495-435 SM).[2][4] [5] Ia berasal dari golongan bangsawan.[5][2] Empedokles dipengaruhi oleh aliran religius yang disebut orfisme, dan juga kaum Pythagorean.[2] Ada sum ber lain yang mengatakan ia mengikuti ajaran Parmenides.[2] Pada usia yang tidak diketahui, ia dibuang dari kota asalnya namun tidak ada informasi mengenai pembuangannya itu.[2] Berdasarkan keterangan dari Aristoteles, Empedokles meninggal pada usia 60 tahun.[2] Menurut legenda, Empedokles meninggal dengan cara terjun ke kawah vulkano di gunung Etna.[4]

Tentang Empat Anasir

Empedokles berpendapat bahwa prinsip yang mengatur alam semesta tidaklah tunggal melainkan terdiri dari empat anasir atau zat.[1][4][5] Memang dia belum memakai istilah anasir (stoikeia) yang sebenarnya baru digunakan oleh Plato, melainkan menggunakan istilah 'akar' (rizomata).[2][6] Empat anasir tersebut adalah air, tanah, api, dan udara.[1][4][5][2][3][6] Keempat anasir tersebut dapat dijumpai di seluruh alam semesta dan memiiki sifat-sifat yang saling berlawanan.[2] Api dikaitkan dengan yang panas dan udara dengan yang dingin, sedangkan tanah dikaitkan dengan yang kering dan air dikaitkan dengan yang basah.[2] Salah satu kemajuan yang dicapai melalui pemikiran Empedokles adalah ketika ia menemukan bahwa udara adalah anasir tersendiri.[2][1] Para filsuf sebelumnya, misalnya Anaximenes, masih mencampuradukkan udara dengan kabut.[2][1]
Empedokles berpendapat bahwa semua anasir memiliki kuantitas yang persis sama.[2] Anasir sendiri tidak berubah, sehingga, misalnya, tanah tidak dapat menjadi air.[2] Akan tetapi, semua benda yang ada di alam semesta terdiri dari keempat anasir tersebut, walaupun berbeda komposisinya.[2] Contohnya, Empedokles menyatakan tulang tersusun dari dua bagian tanah, dua bagian air, dan empat bagian api.[6] Suatu benda dapat berubah karena komposisi empat anasir tersebut diubah.[6]

Demokritos

Demokritos adalah seorang filsuf yang termasuk di dalam Mazhab Atomisme.[1] Ia adalah murid dari Leukippos, pendiri mazhab tersebut.[2][3] Demokritos mengembangkan pemikiran tentang atom sehingga justru pemikiran Demokritos yang lebih dikenal di dalam sejarah filsafat.[3]
Selain sebagai filsuf, Demokritos juga dikenal menguasai banyak keahlian.[3] Sayangnya, karya-karya Demokritos tidak ada yang tersimpan.[4] Demokritos menulis tentang ilmu alam, astronomi, matematika, sastra, epistemologi, dan etika.[3] Ada sekitar 300 kutipan tentang pemikiran Demokritos di dalam sumber-sumber kuno.[3][4] Sebagian besar kutipan-kutipan tersebut berisi tentang etika.[4]
Demokritos lahir di kota Abdera, Yunani Utara.[3][5] Ia hidup sekitar tahun 460 SM hingga 370 SM.[3][2] Ia berasal dari keluarga kaya raya.[3] Pada waktu ia masih muda, ia menggunakan warisannya untuk pergi ke Mesir dan negeri-negeri Timur lainnya.[3] Selain menjadi murid Leukippos, Ia juga belajar kepada Anaxagoras dan Philolaos.[5] Hanya sedikit yang dapat diketahui dari riwayat hidup Demokritos.[4] Banyak data tentang kehidupannya telah tercampur dengan legenda-legenda yang kebenarannya sulit dipercaya.[3]
Meskipun ia hidup sezaman dengan Sokrates, bahkan usianya lebih muda, namun Demokritos tetap digolongkan sebagai filsuf pra-sokratik.[3] Hal ini dikarenakan ia melanjutkan dan mengembangkan ajaran atomisme dari Leukippos yang merupakan filsuf pra-sokratik.[3][4] Ajaran Leukippos dan Demokritos bahkan hampir tidak dapat dipisahkan.[3] Selain itu, filsafat Demokritos tidak dikenal di Athena untuk waktu yang cukup lama.[3] Misalnya saja, Plato tidak mengetahui apa-apa tentang Atomisme.[3][5] Baru Aristoteles yang kemudian menaruh perhatian besar terhadap pandangan atomisme.[3][5]

Bintang

Bintang merupakan benda langit yang memancarkan cahaya. Terdapat bintang semu dan bintang nyata. Bintang semu adalah bintang yang tidak menghasilkan cahaya sendiri, tetapi memantulkan cahaya yang diterima dari bintang lain. Bintang nyata adalah bintang yang menghasilkan cahaya sendiri. Secara umum sebutan bintang adalah objek luar angkasa yang menghasilkan cahaya sendiri (bintang nyata).
Menurut ilmu astronomi, definisi bintang adalah:
Semua benda masif (bermassa antara 0,08 hingga 200 massa matahari) yang sedang dan pernah melangsungkan pembangkitan energi melalui reaksi fusi nuklir.
Oleh sebab itu bintang katai putih dan bintang neutron yang sudah tidak memancarkan cahaya atau energi tetap disebut sebagai bintang. Bintang terdekat dengan Bumi adalah Matahari pada jarak sekitar 149,680,000 kilometer, diikuti oleh Proxima Centauri dalam rasi bintang Centaurus berjarak sekitar empat tahun cahaya.
Bintang-bintang telah menjadi bagian dari setiap kebudayaan. Bintang-bintang digunakan dalam praktik-praktik keagamaan, dalam navigasi, dan bercocok tanam. Kalender Gregorian, yang digunakan hampir di semua bagian dunia, adalah kalender Matahari, mendasarkan diri pada posisi Bumi relatif terhadap bintang terdekat, Matahari.
Astronom-astronom awal seperti Tycho Brahe berhasil mengenali ‘bintang-bintang baru’ di langit (kemudian dinamakan novae) menunjukkan bahwa langit tidaklah kekal. Pada 1584 Giordano Bruno mengusulkan bahwa bintang-bintang sebenarnya adalah Matahari-matahari lain, dan mungkin saja memiliki planet-planet seperti Bumi di dalam orbitnya,[1] ide yang telah diusulkan sebelumnya oleh filsuf-filsuf Yunani kuno seperti Democritus dan Epicurus.[2] Pada abad berikutnya, ide bahwa bintang adalah Matahari yang jauh mencapai konsensus di antara para astronom. Untuk menjelaskan mengapa bintang-bintang ini tidak memberikan tarikan gravitasi pada tata surya, Isaac Newton mengusulkan bahwa bintang-bintang terdistribusi secara merata di seluruh langit, sebuah ide yang berasal dari teolog Richard Bentley.[3]
Astronom Italia Geminiano Montanari merekam adanya perubahan luminositas pada bintang Algol pada 1667. Edmond Halley menerbitkan pengukuran pertama gerak diri dari sepasang bintang “tetap” dekat, memperlihatkan bahwa mereka berubah posisi dari sejak pengukuran yang dilakukan Ptolemaeus dan Hipparchus. Pengukuran langsung jarak bintang 61 Cygni dilakukan pada 1838 oleh Friedrich Bessel menggunakan teknik paralaks.
William Herschel adalah astronom pertama yang mencoba menentukan distribusi bintang di langit. Selama 1780an ia melakukan pencacahan di sekitar 600 daerah langit berbeda. Ia kemudian menyimpulkan bahwa jumlah bintang bertambah secara tetap ke suatu arah langit, yakni pusat galaksi Bima Sakti. Putranya John Herschel mengulangi pekerjaan yang sama di hemisfer langit sebelah selatan dan menemukan hasil yang sama.[4] Selain itu William Herschel juga menemukan bahwa beberapa pasangan bintang bukanlah bintang-bintang yang secara kebetulan berada dalam satu arah garis pandang, melainkan mereka memang secara fisik berpasangan membentuk sistem bintang ganda.

Bayang-bayang

Bayang-bayang terjadi apabila cahaya terhalang sesuatu, maka terbentuklah bayang-bayang.
Cahaya merambat dalam garis lurus. Bila cahaya terhalang sesuatu maka akan timbullah bayangan dari penghalang itu. Jika sumber cahayanya lemah, seperti matahari pada hari berawan, bayangan tidak kentara. Ditempat teduh tidak ada bayang-bayang, karena tempat teduh sudah merupakan bayangan sebuah benda yang menghalangi sinar matahari.Apabila suatu benda bergerak mendekati titik pusat cahaya, bayang-bayang benda tersebut akan membesar karena benda tersebut mendekati titik cahaya pada sumber cahaya itu, sehingga bayangan benda menjadi lebih besar. Dan apabila benda menjauhi cahaya, bayang-bayang benda itupun menjadi kecil karena benda tersebut menjauhi titik sumber cahaya hal ini sesuai dengan sifat cahaya yang merambat merupakan garis lurus menyebar dari satu titik pusat cahaya, contoh sumber cahaya bola lampu, matahari dam masih banyak sumber cahaya lainnya. Terkait sumber cahaya, terdapat sumber cahaya alami yang disebut bintang.

Gerhana

Gerhana adalah fenomena astronomi yang terjadi apabila sebuah benda angkasa bergerak ke dalam bayangan sebuah benda angkasa lain. Istilah ini umumnya digunakan untuk gerhana Matahari ketika posisi Bulan terletak di antara Bumi dan Matahari, atau gerhana bulan saat sebagian atau keseluruhan penampang Bulan tertutup oleh bayangan Bumi. Namun, gerhana juga terjadi pada fenomena lain yang tidak berhubungan dengan Bumi atau Bulan, misalnya pada planet lain dan satelit yang dimiliki planet lain.

Kamis, 19 Februari 2015

Hippasus

Hippasus dari Metapontum adalah seorang filsuf penganut aliran Phytagoras.[1][2] Ia termasuk ke dalam golongan filsuf dari aliran Phytagoras Tua, yakni sebelum sekolah dari aliran Phytagoras di Kroton ditutup pada abad ke-5 SM.[2][1] Beberapa filsuf lain yang termasuk golongan aliran Phytagoras Tua adalah Cercops, Petron, Brontinus, Kalliphon, Democedes, dan Parmeniscus.[2] Tidak ada karya tertulis yang masih tersimpan dari semua filsuf tersebut, termasuk Hippasus.[2]
Ketika aliran Phytagoras terpecah menjadi dua kelompok, akusmatikoi dan mathematikoi, Hippasus menjadi pemimpin dari kelompok mathematikoi.[3] Kelompok akusmatikoi melihat perlunya menaati semua peraturan aliran Phytagoras dengan saksama, sedangkan kelompok mathematikoi mengutamakan pengajaran ilmu pengetahuan, khususnya ilmu pasti.[4] Ia dianggap sebagai penemu bilangan irasional, khususnya membuktikan bahwa akar kuadrat dari 2, \sqrt{2}, adalah bilangan irasional.[5]

Pythagoras

Pythagoras (570 SM495 SM, bahasa Yunani: Πυθαγόρας) adalah seorang matematikawan dan filsuf Yunani yang paling dikenal melalui teoremanya.
Dikenal sebagai "Bapak Bilangan", dia memberikan sumbangan yang penting terhadap filsafat dan ajaran keagamaan pada akhir abad ke-6 SM. Kehidupan dan ajarannya tidak begitu jelas akibat banyaknya legenda dan kisah-kisah buatan mengenai dirinya.
Salah satu peninggalan Pythagoras yang terkenal adalah teorema Pythagoras, yang menyatakan bahwa kuadrat hipotenusa dari suatu segitiga siku-siku adalah sama dengan jumlah kuadrat dari kaki-kakinya (sisi-sisi siku-sikunya). Walaupun fakta di dalam teorema ini telah banyak diketahui sebelum lahirnya Pythagoras, namun teorema ini dikreditkan kepada Pythagoras karena ia yang pertama kali membuktikan pengamatan ini secara matematis.[1]
Pythagoras dan murid-muridnya percaya bahwa segala sesuatu di dunia ini berhubungan dengan matematika, dan merasa bahwa segalanya dapat diprediksikan dan diukur dalam siklus beritme. Ia percaya keindahan matematika disebabkan segala fenomena alam dapat dinyatakan dalam bilangan-bilangan atau perbandingan bilangan. Terdapat legenda yang menyatakan bahwa ketika muridnya Hippasus menemukan bahwa \sqrt{2}, hipotenusa dari segitiga siku-siku sama kaki dengan sisi siku-siku masing-masing 1, adalah bilangan irasional, murid-murid Pythagoras lainnya memutuskan untuk membunuhnya karena tidak dapat membantah bukti yang diajukan Hippasus.[2]

Teorema Pythagoras

Dalam matematika, teorema Pythagoras adalah suatu keterkaitan dalam geometri Euklides antara tiga sisi sebuah segitiga siku-siku. Teorema ini dinamakan menurut nama filsuf dan matematikawan Yunani abad ke-6 SM, Pythagoras. Pythagoras sering dianggap sebagai penemu teorema ini meskipun sebenarnya fakta-fakta teorema ini sudah diketahui oleh matematikawan India (dalam Sulbasutra Baudhayana dan Katyayana), Yunani, Tionghoa dan Babilonia jauh sebelum Pythagoras lahir. Pythagoras mendapat kredit karena ialah yang pertama membuktikan kebenaran universal dari teorema ini melalui pembuktian matematis.[1]
Ada dua bukti kontemporer yang bisa dianggap sebagai catatan tertua mengenai teorema Pythagoras: satu dapat ditemukan dalam Chou Pei Suan Ching (sekitar 500-200 SM), satunya lagi dalam buku Elemen Euklides.

Vektor (spasial)

Vektor dalam matematika dan fisika adalah obyek geometri yang memiliki besar dan arah. Vektor jika digambar dilambangkan dengan tanda panah (→). Besar vektor proporsional dengan panjang panah dan arahnya bertepatan dengan arah panah. Vektor dapat melambangkan perpindahan dari titik A ke B.[1] Vektor sering ditandai sebagai
\overrightarrow{AB}.
Vektor berperan penting dalam fisika: posisi, kecepatan dan percepatan obyek yang bergerak dan gaya dideskripsikan sebagai vektor.
"Vektor satuan" (unit vector) adalah suatu vektor dengan panjang "satu". Biasanya vektor satuan hanya digunakan untuk menunjukkan arah. Suatu vektor dengan panjang sembarang dapat dibagi oleh panjang untuk mendapatkan vektor satuan. Ini dikenal sebagai "normalisasi" (normalizing) suatu vektor. Suatu vektor satuan sering diindikasikan dengan sebuah "topi" di atas huruf "a" kecil sebagaimana pada â.
Untuk menormalisasi suatu vektor a = [a1, a2, a3], bagilah vektor itu dengan panjangnya ||a||. Jadi:
\mathbf{\hat{a}} = \frac{\mathbf{a}}{\left\|\mathbf{a}\right\|} = \frac{a_1}{\left\|\mathbf{a}\right\|}\mathbf{e}_1 + \frac{a_2}{\left\|\mathbf{a}\right\|}\mathbf{e}_2 + \frac{a_3}{\left\|\mathbf{a}\right\|}\mathbf{e}_3
Vektor nol (null vector)
"Vektor nol" (null vector atau zero vector) adalah suatu vektor yang panjangnya "nol". Penulisan dalam koordinat vektor ini adalah (0,0,0), dan biasanya diberi lambang \vec{0}, atau 0. Vektor ini berbeda dengan vektor lain, di mana vektor ini tidak dapat dinormalisasi (yaitu, tidak ada vektor satuan yang merupakan kelipatan vektor nol). Jumlah vektor nol dengan vektor apapun a adalah a (yaitu, 0+a=a).
Untuk mencari panjang sebuah vektor dalam ruang euklidian tiga dimensi, dapat digunakan cara berikut:
\left\|\mathbf{a}\right\|=\sqrt{{a_1}^2+{a_2}^2+{a_3}^2}

Gaya (fisika)

Gaya, di dalam ilmu fisika, adalah interaksi apapun yang dapat menyebabkan sebuah benda bermassa mengalami perubahan gerak, baik dalam bentuk arah, maupun konstruksi geometris.[1]. Dengan kata lain, sebuah gaya dapat menyebabkan sebuah objek dengan massa tertentu untuk mengubah kecepatannya (termasuk untuk bergerak dari keadaan diam), atau berakselerasi, atau untuk terdeformasi. Gaya memiliki besaran (magnitude) dan arah, sehingga merupakan kuantitas vektor. Satuan SI yang digunakan untuk mengukur gaya adalah Newton (dilambangkan dengan N). Gaya sendiri dilambangkan dengan simbol F.
Hukum kedua Newton menyatakan bahwa gaya resultan yang bekerja pada suatu benda sama dengan laju pada saat momentumnya berubah terhadap waktu. Jika massa objek konstan, maka hukum ini menyatakan bahwa percepatan objek berbanding lurus dengan gaya yang bekerja pada objek dan arahnya juga searah dengan gaya tersebut, dinyatakan dengan
\vec{F} = m \vec{a}
Konsep yang berhubungan dengan gaya antara lain: gaya hambat, yang mengurangi kecepatan benda, torsi yang menyebabkan perubahan kecepatan rotasi benda. Pada objek yang diperpanjang, setiap bagian benda menerima gaya, distribusi gaya ke setiap bagian ini disebut regangan. Tekanan merupakan regangan sederhana. Regangan biasanya menyebabkan deformasi pada benda padat, atau aliran pada benda cair.
Aristoteles dan pengikutnya meyakini bahwa keadaan alami objek di Bumi tak bergerak dan bahwasannya objek-objek tersebut cenderung ke arah keadaan tersebut jika dibiarkan begitu saja. Aristoteles membedakan antara kecenderungan bawaan objek-objek untuk menemukan “tempat alami” mereka (misal benda berat jatuh), yang menuju “gerak alami”, dan tak alami atau gerak terpaksa, yang memerlukan penerapan kontinyu gaya.
Namun teori ini meskipun berdasarkan pengalaman sehari-hari bagaimana objek bergerak (misal kuda dan pedati), memiliki kesulitan perhitungan yang menjengkelkan untuk proyektil, semisal penerbangan panah. Beberapa teori telah dibahas selama berabad-abad, dan gagasan pertengahan akhir bahwa objek dalam gerak terpaksa membawa gaya dorong bawaan adalah pengaruh pekerjaan Galileo Galilei.
Galileo melakukan eksperimen dimana batu dan peluru meriam keduanya digelindingkan pada suatu kecuraman untuk membuktikan kebalikan teori gerak Aristoteles pada awal abad 17.
Galileo menunjukkan bahwa benda dipercepat oleh gravitasi yang mana tak gayut massanya dan berargumentasi bahwa objek mempertahankan kecepatan mereka jika tidak dipengaruhi oleh gaya - biasanya gesekan.
Isaac Newton dikenal sebagai pembantah secara tegas untuk pertama kalinya, bahwa secara umum, gaya konstan menyebabkan laju perubahan konstan (turunan waktu) dari momentum.
Secara esensi, ia memberi definisi matematika pertama kali dan hanya definisi matematika dari kuantitas gaya itu sendiri - sebagai turunan waktu momentum: F = dp/dt. Pada tahun 1784 Charles Coulomb menemukan hukum kuadrat terbalik interaksi antara muatan listrik menggunakan keseimbangan torsional, yang mana adalah gaya fundamental kedua.
Gaya nuklir kuat dan gaya nuklir lemah ditemukan pada abad ke 20. Dengan pengembangan teori medan kuantum dan relativitas umum, disadari bahwa “gaya” adalah konsep berlebihan yang muncul dari kekekalan momentum (momentum 4 dalam relativitas dan momentum partikel virtual dalam elektrodinamika kuantum).
Dengan demikian sekarang ini dikenal gaya fundamental adalah lebih akurat disebut “interaksi fundamental”.

Muatan listrik

Alat pengukur torsi (gaya yang sangat lemah) buatan Charles Coulomb untuk mengukur muatan listrik
Muatan listrik adalah muatan dasar yang dimiliki suatu benda, yang membuatnya mengalami gaya pada benda lain yang berdekatan dan juga memiliki muatan listrik. Simbol Q sering digunakan untuk menggambarkan muatan. Sistem Satuan Internasional dari satuan Q adalah coulomb, yang merupakan 6.24 x 1018 muatan dasar. Q adalah sifat dasar yang dimiliki oleh materi baik itu berupa proton (muatan positif) maupun elektron (muatan negatif). Muatan listrik total suatu atom atau materi ini bisa positif, jika atomnya kekurangan elektron. Sementara atom yang kelebihan elektron akan bermuatan negatif. Besarnya muatan tergantung dari kelebihan atau kekurangan elektron ini, oleh karena itu muatan materi/atom merupakan kelipatan dari satuan Q dasar. Dalam atom yang netral, jumlah proton akan sama dengan jumlah elektron yang mengelilinginya (membentuk muatan total yang netral atau tak bermuatan).

Listrik

Kelistrikan adalah sifat benda yang muncul dari adanya muatan listrik. Listrik, dapat juga diartikan sebagai berikut:
  • Listrik adalah kondisi dari partikel subatomik tertentu, seperti elektron dan proton, yang menyebabkan penarikan dan penolakan gaya di antaranya.
  • Listrik adalah sumber energi yang disalurkan melalui kabel. Arus listrik timbul karena muatan listrik mengalir dari saluran positif ke saluran negatif.
Bersama dengan magnetisme, listrik membentuk interaksi fundamental yang dikenal sebagai elektromagnetisme. Listrik memungkinkan terjadinya banyak fenomena fisika yang dikenal luas, seperti petir, medan listrik, dan arus listrik. Listrik digunakan dengan luas di dalam aplikasi-aplikasi industri seperti elektronik dan tenaga listrik.
Listrik memberi kenaikan terhadap 4 gaya dasar alami, dan sifatnya yang tetap dalam benda yang dapat diukur. Dalam kasus ini, frasa "jumlah listrik" digunakan juga dengan frasa "muatan listrik" dan juga "jumlah muatan". Ada 2 jenis muatan listrik: positif dan negatif. Melalui eksperimen, muatan-sejenis saling menolak dan muatan-lawan jenis saling menarik satu sama lain. Besarnya gaya menarik dan menolak ini ditetapkan oleh hukum Coulomb. Beberapa efek dari listrik didiskusikan dalam fenomena listrik dan elektromagnetik.
Satuan unit SI dari muatan listrik adalah coulomb, yang memiliki singkatan "C". Simbol Q digunakan dalam persamaan untuk mewakili kuantitas listrik atau muatan. Contohnya, "Q=0,5 C" berarti "kuantitas muatan listrik adalah 0,5 coulomb".
Jika listrik mengalir melalui bahan khusus, misalnya dari wolfram dan tungsten, cahaya pijar akan dipancarkan oleh logam itu. Bahan-bahan seperti itu dipakai dalam bola lampu (bulblamp atau bohlam).
Setiap kali listrik mengalir melalui bahan yang mempunyai hambatan, maka akan dilepaskan panas. Semakin besar arus listrik, maka panas yang timbul akan berlipat. Sifat ini dipakai pada elemen setrika dan kompor listrik..
Aliran listrik mengalir dari saluran positif ke saluran negatif. Dengan listrik arus searah jika kita memegang hanya kabel positif (tapi tidak memegang kabel negatif), listrik tidak akan mengalir ke tubuh kita (kita tidak terkena strum). Demikian pula jika kita hanya memegang saluran negatif.
Dengan listrik arus bolak-balik, Listrik bisa juga mengalir ke bumi (atau lantai rumah). Hal ini disebabkan oleh sistem perlistrikan yang menggunakan bumi sebagai acuan tegangan netral (ground). Acuan ini, yang biasanya di pasang di dua tempat (satu di ground di tiang listrik dan satu lagi di ground di rumah). Karena itu jika kita memegang sumber listrik dan kaki kita menginjak bumi atau tangan kita menyentuh dinding, perbedaan tegangan antara kabel listrik di tangan dengan tegangan di kaki (ground), membuat listrik mengalir dari tangan ke kaki sehingga kita akan mengalami kejutan listrik ("terkena strum").
Daya listrik dapat disimpan, misalnya pada sebuah aki atau batere. Listrik yang kecil, misalnya yang tersimpan dalam batere, tidak akan memberi efek setrum pada tubuh. Pada aki mobil yang besar, biasanya ada sedikit efek setrum, meskipun tidak terlalu besar dan berbahaya. Listrik mengalir dari kutub positif batere/aki ke kutub negatif.
Sistem listrik yang masuk ke rumah kita, jika menggunakan sistem listrik 1 fase, biasanya terdiri atas 3 kabel:
Pertama adalah kabel fase (berwarna merah/hitam/kuning) yang merupakan sumber listrik bolak-balik (fase positif dan fase negatif berbolak-balik terus menerus). Kabel ini adalah kabel yang membawa tegangan dari pembangkit tenaga listrik (PLN misalnya); kabel ini biasanya dinamakan kabel panas (hot), dapat dibandingkan seperti kutub positif pada sistem listrik arus searah (walaupun secara fisika adalah tidak tepat).
Kedua adalah kabel netral (berwarna biru). Kabel ini pada dasarnya adalah kabel acuan tegangan nol, yang disambungkan ke tanah di pembangkit tenaga listrik, pada titik-titik tertentu (pada tiang listrik) jaringan listrik dipasang kabel netral ini untuk disambungkan ke ground terutama pada trafo penurun tegangan dari saluran tegangan tinggi tiga jalur menjadi tiga jalur fase ditambah jalur ground (empat jalur) yang akan disalurkan kerumah-rumah atau kelainnya.
Untuk mengatasi kebocoran (induksi) listrik dari peralatan tiap rumah dipasang kabel tanah atau ground (berwarna hijau-kuning) dihubungkan dengan logam (elektroda) yang ditancapkan ke tanah untuk disatukan dengan saluran kabel netral dari jala listrik dipasang pada jarak terdekat dengan alat meteran listrik atau dekat dengan sikring.
Dalam kejadian-kejadian badai listrik luar angkasa (space electrical storm) yang besar, ada kemungkinan arus akan mengalir dari acuan tanah yang satu ke acuan tanah lain yang jauh letaknya. Fenomena alami ini bisa memicu kejadian mati lampu berskala besar.
Ketiga adalah kabel tanah atau Ground (berwarna hijau-kuning). Kabel ini adalah acuan nol di lokasi pemakai, yang disambungkan ke tanah (ground) di rumah pemakai, kabel ini benar-benar berasal dari logam yang ditanam di tanah di rumah kita, kabel ini merupakan kabel pengamanan yang disambungkan ke badan (chassis) alat2 listrik di rumah untuk memastikan bahwa pemakai alat tersebut tidak akan mengalami kejutan listrik.
Kabel ketiga ini jarang dipasang di rumah-rumah penduduk, pastikan teknisi (instalatir) listrik anda memasang kabel tanah (ground) pada sistem listrik di rumah. Pemasang ini penting, karena merupakan syarat mutlak bagi keselamatan anda dari bahaya kejutan listrik yang bisa berakibat fatal dan juga beberapa alat-alat listrik yang sensitif tidak akan bekerja dengan baik jika ada induksi listrik yang muncul di chassisnya (misalnya karena efek arus Eddy).

Unit-unit listrik SI

edit Unit-unit elektromagnetisme SI
Simbol Nama kuantitas Unit turunan
Unit dasar
I Arus ampere A A
Q Muatan listrik, Jumlah listrik coulomb C A·s
V Perbedaan potensial volt V J/C = kg·m2·s−3·A−1
R, Z Tahanan, Impedansi, Reaktansi ohm Ω V/A = kg·m2·s−3·A−2
ρ Ketahanan ohm meter Ω·m kg·m3·s−3·A−2
P Daya, Listrik watt W V·A = kg·m2·s−3
C Kapasitansi farad F C/V = kg−1·m−2·A2·s4

Elastisitas reciprocal farad F−1 V/C = kg·m2·A−2·s−4
ε Permitivitas farad per meter F/m kg−1·m−3·A2·s4
χe Susceptibilitas listrik (tak berdimensi) - -

Konduktansi, Admitansi, Susceptansi siemens S Ω−1 = kg−1·m−2·s3·A2
σ Konduktivitas siemens per meter S/m kg−1·m−3·s3·A2
H Medan magnet, Kekuatan medan magnet ampere per meter A/m A·m−1
Φm Flux magnet weber Wb V·s = kg·m2·s−2·A−1
B Kepadatan medan magnet, Induksi magnet, Kekuatan medan magnet tesla T Wb/m2 = kg·s−2·A−1

Reluktansi ampere-turns per weber A/Wb kg−1·m−2·s2·A2
L Induktansi henry H Wb/A = V·s/A = kg·m2·s−2·A−2
μ Permeabilitas henry per meter H/m kg·m·s−2·A−2
χm Susceptibilitas magnet (tak berdimensi) - -

Thomas Alva Edison

Thomas Alva Edison (lahir 11 Februari 1847 – meninggal 18 Oktober 1931 pada umur 84 tahun) adalah penemu dan pengusaha yang mengembangkan banyak peralatan penting. Si Penyihir Menlo Park ini merupakan salah seorang penemu pertama yang menerapkan prinsip produksi massal pada proses penemuan.

Masa kecil

Ia lahir di Milan, Ohio, Amerika Serikat pada tanggal 11 Februari 1847. Pada masa kecilnya di Amerika Serikat,Edison selalu mendapat nilai buruk di sekolahnya. Oleh karena itu ibunya memberhentikannya dari sekolah dan mengajar sendiri di rumah. Di rumah dengan leluasa Edison kecil dapat membaca buku-buku ilmiah dewasa dan mulai mengadakan berbagai percobaan ilmiah sendiri. Pada Usia 12 tahun ia mulai bekerja sebagai penjual koran, buah-buahan dan gula-gula di kereta api. Kemudian ia menjadi operator telegraf, Ia pindah dari satu kota ke kota lain. Di New York ia diminta untuk menjadi kepala mesin telegraf yang penting. Mesin-mesin itu mengirimkan berita bisnis ke seluruh perusahaan terkemuka di New York.

Masa muda

Pada tahun 1870 ia menemukan mesin telegraf yang lebih baik. Mesin-mesinnya dapat mencetak pesan-pesan di atas pita kertas yang panjang. Uang yang dihasilkan dari penemuannya itu cukup untuk mendirikan perusahaan sendiri. Pada tahun 1874 ia pindah ke Menlo Park, New Jersey. Disana ia membuat sebuah bengkel ilmiah yang besar dan yang pertama di dunia. Setelah itu ia banyak melakukan penemuan-penemuan yang penting. Pada tahun 1877 ia menemukan Gramofon. Dalam tahun 1879 ia berhasil menemukan lampu listrik kemudian ia juga menemukan proyektor untuk film-film kecil. Tahun 1882 ia memasang lampu-lampu listrik di jalan-jalan dan rumah-rumah sejauh satu kilometer di kota New York. Hal ini adalah pertama kalinya di dunia lampu listrik di pakai di jalan-jalan. Pada tahun 1890, ia mendirikan perusahaan General Electric.
Thomas Edison waktu muda
Edison dipandang sebagai salah seorang pencipta paling produktif pada masanya, memegang rekor 1.093 paten atas namanya. Ia juga banyak membantu dalam bidang pertahanan pemerintahan Amerika Serikat. Beberapa penelitiannya antara lain : mendeteksi pesawat terbang, menghancurkan periskop dengan senjata mesin, mendeteksi kapal selam, menghentikan torpedo dengan jaring, menaikkan kekuatan torpedo, kapal kamuflase, dan masih banyak lagi.
Ia meninggal pada usianya yang ke-84, pada hari ulang tahun penemuannya yang terkenal, bola lampu modern.

Arus searah

Arus searah (bahasa Inggris direct current atau DC) adalah aliran elektron dari suatu titik yang energi potensialnya tinggi ke titik lain yang energi potensialnya lebih rendah. Sumber arus listrik searah biasanya adalah baterai (termasuk aki dan Elemen Volta) dan panel surya. Arus searah biasanya mengalir pada sebuah konduktor, walaupun mungkin saja arus searah mengalir pada semi-konduktor, isolator, dan ruang hampa udara
Arus searah dulu dianggap sebagai arus positif yang mengalir dari ujung positif sumber arus listrik ke ujung negatifnya. Pengamatan-pengamatan yang lebih baru menemukan bahwa sebenarnya arus searah merupakan arus negatif (elektron) yang mengalir dari kutub negatif ke kutub positif. Aliran elektron ini menyebabkan terjadinya lubang-lubang bermuatan positif, yang "tampak" mengalir dari kutub positif ke kutub negatif.
Penyaluran tenaga listrik komersil yang pertama (yang dibuat oleh Thomas Edison di akhir abad ke 19) menggunakan listrik arus searah. Karena listrik arus bolak-balik lebih mudah digunakan dibandingkan dengan listrik arus searah untuk transmisi (penyaluran) dan pembagian tenaga listrik, pada zaman sekarang hampir semua transmisi tenaga listrik menggunakan listrik arus bolak-balik.

Arus bolak-balik

Arus bolak-balik (AC/alternating current) adalah arus listrik dimana besarnya dan arahnya arus berubah-ubah secara bolak-balik. Berbeda dengan arus searah dimana arah arus yang mengalir tidak berubah-ubah dengan waktu. Bentuk gelombang dari listrik arus bolak-balik biasanya berbentuk gelombang sinusoida, karena ini yang memungkinkan pengaliran energi yang paling efisien. Namun dalam aplikasi-aplikasi spesifik yang lain, bentuk gelombang lain pun dapat digunakan, misalnya bentuk gelombang segitiga (triangular wave) atau bentuk gelombang segi empat (square wave).
Secara umum, listrik bolak-balik berarti penyaluran listrik dari sumbernya (misalnya PLN) ke kantor-kantor atau rumah-rumah penduduk. Namun ada pula contoh lain seperti sinyal-sinyal radio atau audio yang disalurkan melalui kabel, yang juga merupakan listrik arus bolak-balik. Di dalam aplikasi-aplikasi ini, tujuan utama yang paling penting adalah pengambilan informasi yang termodulasi atau terkode di dalam sinyal arus bolak-balik tersebut.

Lubang hitam supermasif

Lubang hitam supermasif (dalam bahasa Inggris: Supermassive black hole) adalah jenis lubang hitam terbesar, dengan massa dari ratusan ribu hingga miliaran kali massa matahari. Kebanyakan atau bahkan semua galaksi diperkirakan memiliki lubang hitam supermasif di pusatnya. Di pusat galaksi Bimasakti diyakini terdapat lubang hitam supermasif Sagittarius A*.
Lubang hitam supermasif pertama kali dihipotesa oleh Donald Lynden-Bell dan Martin Rees pada tahun 1971 yang beranggapan bahwa pusat galaksi Bimasakti memiliki lubang hitam supermasif. Lubang hitam supermasif di pusat Bimasakti ditemukan pada tanggal 13 dan 15 Februari 1974, oleh astronomer Bruce Balick dan Robert Brown interferometer garis dasar milik Observatorium Astronomi Radio Nasional dan dinamakan Sagittarius A*.[1] Mereka menemukan sumber radio yang memancarkan radiasi sinkrotron, yang ditemukan bersifat padat dan tidak bergerak karena gravitasinya. Oleh karena itu, ini adalah indikasi pertama bahwa terdapat lubang hitam supermasif di bagian inti Bimasakti.

Ionisasi

Energi ionisasi unsur-unsur netral
Ionisasi adalah proses fisik mengubah atom atau molekul menjadi ion dengan menambahkan atau mengurangi partikel bermuatan seperti elektron atau lainnya. Proses ionisasi ke muatan positif atau negatif sedikit berbeda. Ion bermuatan positif didapat ketika elektron yang terikat pada atom atau molekul menyerap energi cukup agar dapat lepas dari potensial listrik yang mengikatnya. Energi yang dibutuhkan tersebut disebut potensial ionisasi. Ion bermuatan negatif didapat ketika elektron bebas bertabrakan dengan atom dan terperangkap dalam kulit atom dengan potensial listrik tertentu. Ionisasi terdiri dari dua tipe: Ionisasi sekuensial dan ionisasi non-sekuensial. Pada fisika klasik, hanya ionisasi sekuensial yang dapat terjadi sehingga disebut ionisasi klasik. Ionisasi non-sekuensial melawan beberapa hukum fisika klasik dan akan dijelaskan di bagian ionisasi kuantum.

Getaran

Getaran adalah suatu gerak bolak-balik di sekitar kesetimbangan. Kesetimbangan di sini maksudnya adalah keadaan dimana suatu benda berada pada posisi diam jika tidak ada gaya yang bekerja pada benda tersebut. Getaran mempunyai amplitudo (jarak simpangan terjauh dengan titik tengah) yang sama.
Dasar analisis getaran dapat dipahami dengan mempelajari model sederhana massa-pegas-peredam kejut. Struktur rumit seperti badan mobil dapat dimodelkan sebagai "jumlahan" model massa-pegas-peredam kejut tersebut. Model ini adalah contoh osilator harmonik sederhana.

Getaran bebas tanpa peredam

Model massa-pegas sederhanal
Pada model yang paling sederhana redaman dianggap dapat diabaikan, dan tidak ada gaya luar yang memengaruhi massa (getaran bebas).
Dalam keadaan ini gaya yang berlaku pada pegas Fs sebanding dengan panjang peregangan x, sesuai dengan hukum Hooke, atau bila dirumuskan secara matematis:

F_s=- k x \!
dengan k adalah tetapan pegas.
Sesuai Hukum kedua Newton gaya yang ditimbulkan sebanding dengan percepatan massa:

\Sigma\ F = ma  =   m \ddot{x}  =  m \frac{d^2x}{dt^2} =
Karena F = Fs, kita mendapatkan persamaan diferensial biasa berikut:
m \ddot{x} + k x = 0.
Gerakan harmonik sederhana sistem benda-pegas
Bila kita menganggap bahwa kita memulai getaran sistem dengan meregangkan pegas sejauh A kemudian melepaskannya, solusi persamaan di atas yang memerikan gerakan massa adalah:

x(t) =  A \cos (2 \pi f_n  t) \!
Solusi ini menyatakan bahwa massa akan berosilasi dalam gerak harmonis sederhana yang memiliki amplitudo A dan frekuensi fn. Bilangan fn adalah salah satu besaran yang terpenting dalam analisis getaran, dan dinamakan frekuensi alami takredam. Untuk sistem massa-pegas sederhana, fn didefinisikan sebagai:

f_n    =   {1\over {2 \pi}} \sqrt{k \over m} \!
Catatan: frekuensi sudut \omega (\omega=2 \pi f) dengan satuan radian per detik kerap kali digunakan dalam persamaan karena menyederhanakan persamaan, namun besaran ini biasanya diubah ke dalam frekuensi "standar" (satuan Hz) ketika menyatakan frekuensi sistem.
Bila massa dan kekakuan (tetapan k) diketahui frekuensi getaran sistem akan dapat ditentukan menggunakan rumus di atas.

Getaran bebas dengan redaman

Mass Spring Damper Model
Bila peredaman diperhitungkan, berarti gaya peredam juga berlaku pada massa selain gaya yang disebabkan oleh peregangan pegas. Bila bergerak dalam fluida benda akan mendapatkan peredaman karena kekentalan fluida. Gaya akibat kekentalan ini sebanding dengan kecepatan benda. Konstanta akibat kekentalan (viskositas) c ini dinamakan koefisien peredam, dengan satuan N s/m (SI)


F_d  =  - c v  = - c \dot{x} =  - c \frac{dx}{dt} \!
Dengan menjumlahkan semua gaya yang berlaku pada benda kita mendapatkan persamaan
m \ddot{x} + { c } \dot{x} + {k } x = 0.
Solusi persamaan ini tergantung pada besarnya redaman. Bila redaman cukup kecil, sistem masih akan bergetar, namun pada akhirnya akan berhenti. Keadaan ini disebut kurang redam, dan merupakan kasus yang paling mendapatkan perhatian dalam analisis vibrasi. Bila peredaman diperbesar sehingga mencapai titik saat sistem tidak lagi berosilasi, kita mencapai titik redaman kritis. Bila peredaman ditambahkan melewati titik kritis ini sistem disebut dalam keadaan lewat redam.
Nilai koefisien redaman yang diperlukan untuk mencapai titik redaman kritis pada model massa-pegas-peredam adalah:
c_c= 2 \sqrt{k m}
Untuk mengkarakterisasi jumlah peredaman dalam sistem digunakan nisbah yang dinamakan nisbah redaman. Nisbah ini adalah perbandingan antara peredaman sebenarnya terhadap jumlah peredaman yang diperlukan untuk mencapai titik redaman kritis. Rumus untuk nisbah redaman (\zeta ) adalah
\zeta = { c \over 2 \sqrt{k m} }.
Sebagai contoh struktur logam akan memiliki nisbah redaman lebih kecil dari 0,05, sedangkan suspensi otomotif akan berada pada selang 0,2-0,3.
Solusi sistem kurang redam pada model massa-pegas-peredam adalah
x(t)=X  e^{-\zeta \omega_n t} \cos({\sqrt{1-\zeta^2} \omega_n t - \phi}) , \    \ \omega_n= 2\pi f_n

Nilai X, amplitudo awal, dan  \phi , ingsutan fase, ditentukan oleh panjang regangan pegas.
Dari solusi tersebut perlu diperhatikan dua hal: faktor eksponensial dan fungsi cosinus. Faktor eksponensial menentukan seberapa cepat sistem teredam: semakin besar nisbah redaman, semakin cepat sistem teredam ke titik nol. Fungsi kosinus melambangkan osilasi sistem, namun frekuensi osilasi berbeda daripada kasus tidak teredam.
Frekuensi dalam hal ini disebut "frekuensi alamiah teredam", fd, dan terhubung dengan frekuensi alamiah takredam lewat rumus berikut.
f_d= \sqrt{1-\zeta^2} f_n
Frekuensi alamiah teredam lebih kecil daripada frekuensi alamiah takredam, namun untuk banyak kasus praktis nisbah redaman relatif kecil, dan karenanya perbedaan tersebut dapat diabaikan. Karena itu deskripsi teredam dan takredam kerap kali tidak disebutkan ketika menyatakan frekuensi alamiah.